
CSE 125
Discrete Mathematics

Nazia Sultana Chowdhury
nazia.nishat1971@gmail.com

Binary Search

● Pre-condition: Sorted Array.

Divide and Conquer Algorithms

● A divide-and-conquer algorithm recursively breaks
down a problem into two or more sub-problems of the
same or related type, until these become simple enough
to be solved directly.

● The solutions to the sub-problems are then combined to
give a solution to the original problem.

Quick Sort Algorithm

● Quicksort is a sorting algorithm based on the divide and
conquer approach.

● Sort function by most of the language libraries are
implementations of Quick Sort only.

https://www.programiz.com/dsa/sorting-algorithm

Merge Sort Algorithm

● Merge Sort is a Divide and Conquer algorithm.
● It divides the input array into two halves, calls itself for

the two halves, and then merges the two sorted halves.

Fig: Merging Sorted Array

Fig: Merge Sort Process

Fig: Merge Sort Process

The Growth of Functions

● Determining how fast an algorithm can solve a problem
as the size of the input grows.

● Comparing the efficiency of two different algorithms
for solving the same problem.

Describing Growth of Functions

● Big-O Notation
● Big-Omega
● Big-Theta Notation

Big-O Notation

Let f and g be functions from the set of integers or the set of
real numbers to the set of real numbers.

● f (x) is O(g(x)) if there are constants C and k such that

|f (x)| ≤ C|g(x)| whenever x > k.

Big-O Notation

● Describes the long-term growth rate of functions.
● Doesn't care about constants.
● Gives an upper bound.

Big-Omega

● Let f and g be functions from the set of integers or the
set of real numbers to the set of real numbers.

● f (x) is Ω(g(x)) if there are positive constants C and k
such that |f (x)| ≥ C|g(x)| whenever x > k.

● Lower Bound.

Big-Theta Notation

Let f and g be functions from the set of integers or the set of
real numbers to the set of real numbers.
f (x) is Θ(g(x)) if
● f (x) is O(g(x)) and
● f (x) is Ω(g(x)).

Big-Theta

Time Complexity

● Estimates how much time the algorithm will use for some input.
● The idea is to represent the efficiency as a function whose

parameter is the size of the input.
● By calculating the time complexity, we can find out whether the

algorithm is fast enough without implementing it.

Time Complexity: O(n)

Time Complexity: O(n2)

Time Complexity: O(n)

Time Complexity: O(n2)

Time Complexity: O(n2)

Time Complexity: O(nm)

Some useful estimates assuming a time limit of one second.

